If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4w^2-4w+3=0
a = -4; b = -4; c = +3;
Δ = b2-4ac
Δ = -42-4·(-4)·3
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*-4}=\frac{-4}{-8} =1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*-4}=\frac{12}{-8} =-1+1/2 $
| 7j+4=4 | | 4x-21=5-9x | | -8-3(5n-7)=103 | | 10=-5t+5 | | 14+2n+4n=8n+2 | | 7/4x+8/8x=36/12 | | 0=4b+12 | | 7y+5-3y=9 | | X-6-7x=-12 | | x^2-121=75 | | 2x^2+74x-798=0 | | 10/2x(3+4)^2=Z | | H=6/h+3/5 | | x^2+74x-798=0 | | -54=9(r-5) | | 12x+3x=10-5 | | 10/2x(3+4)^2=x | | 3(2x-5)=-6x-15 | | 6/88=x/21 | | -5(-10+r)=70 | | 6/33=x/8 | | 33/6=x/8 | | 8/33=6/x | | m-38.72=23.19 | | 64=(x+12) | | 6x²+30x-36=0 | | 33/8=6/x | | 0.65x+0.05(20-x)=0.10(82) | | -2(5+b)=26 | | 8/33=x/6 | | 64=(x+12)3/2 | | -2(5+b)=36 |